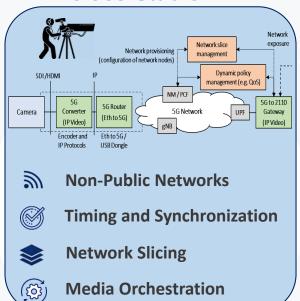
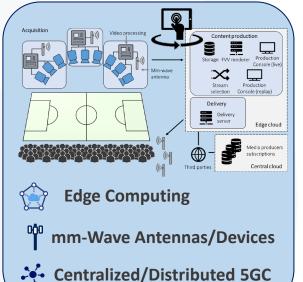


5G key technology enablers for emerging media content production services


ICT-42-2020

5G core technologies innovation

Live Audio RECORDS Production



Multiple Camera RECORDS Wireless Studio

Live Immersive Media Production

Design

of 5G components for professional content production

Development

of state-of-the-art 5G prototypes

Integration

into end-to-end 5G infrastructures

Validation

in the context of real production use cases

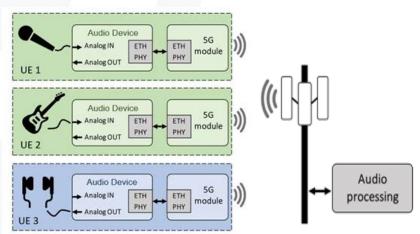
Demonstration

of the potential value for the sector

RECORDS Consortium

Use case Live audio production

Main partners:


- In a live audio production setup (e.g. music concerts, music festivals, TV shows), the artists are equipped with professional Programme Making and Special Events (PMSE) equipment
 - 5G wireless microphones
 - In-Ear Monitor (IEM) systems
 - Control tools and gateways between 5G and traditional audio infrastructure domains.

4 main areas of work:

- Capturing of live audio data
- Temporary spectrum access
- Automatic setup of wireless equipment
- Use of a local NPN

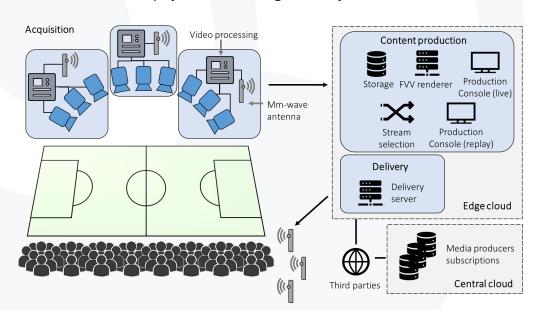
Requirements:

- End-to-end delay < 4 ms</p>
- User data rate ~500 kbps
- Synchronization of all audio sources ± 500 ns

Use case live immersive media

Main partners:

leader


- Real-time end-to-end free-viewpoint video (FW) system that includes capturing, 5G contribution, virtual view synthesis on an edge server, 5G delivery and visualization on user terminals.
- The 5G connectivity allows a portable FVV system to operate in real time with reduced deployment cost and high flexibility.

Video workflow in 3 stages:

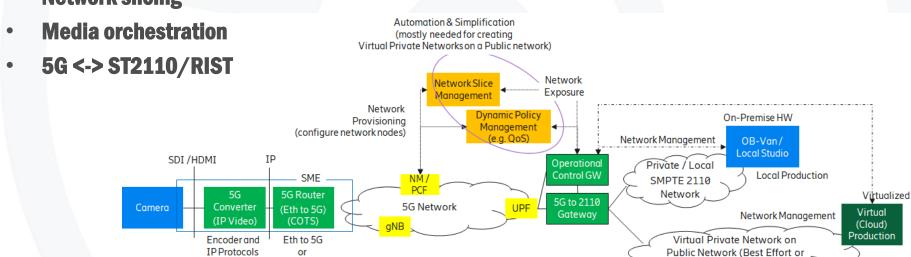
- Capturing.
- **Encoding and transmission.**
- Synthesis and visualization.

Requirements:

- Media acquisition: up to 1.5 Gbps per camera.
- Radio uplink speeds of 20-200 Mbps.
- Downlink speeds of 2-20 Mbps per user.
- Connected end-users: 10-100 per 1000 m².
- Reliability: 1 error every 10 min.

Use case Multiple camera wireless studic

Main partners:


- The best of an **IP studio** combined with the super-fast and highly reliable wireless 5G connections
- 5G will facilitate new types of workflows addressing 3 core requirements:
 - Flexibility and reduction cost in setting up productions
 - Scalability from small to large events
 - Shareability of content along the production chain and between creative stages
- 2 sub use-cases:
 - 1. Multiple cameras (~5) in a wireless studio. Wired/wireless functionalities will be combined using a fully IP system
 - 2. Outdoor production scenario with 2 or more 5G-enabled cameras and sound capture devices connected to NPN

UC2 Multiple wireless camera - Components

USB Dongle

- Non-public networks
- Timing and synchronization
- Network slicing

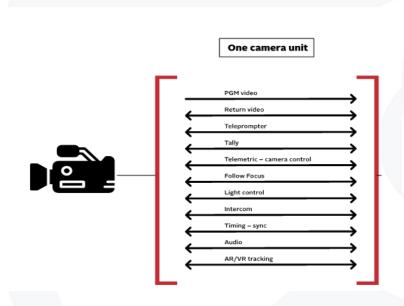
Remote Production

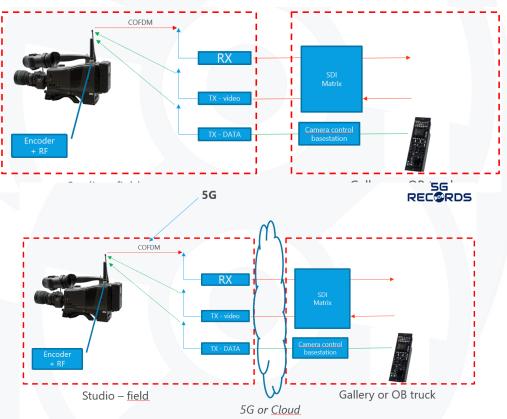
QoS Provisioned)

Professional content production today

Sport events, newsgathering, etc

- DVB-T based transmitter:
 - Bandwidth: 30/40Mbps
 - Latency: >= 20ms
 - UHF link for the «camera» controls
- Bonded cellular systems:
 - Bandwidth: depends from the number of aggregated modems; 30-70 Mbps
 - Latency: >=600ms-1s
 - Some of them capable to deal with return video, tally and intercom (separate solutions)
 - Plug & Play solutions




UC2 Multiple wireless camera

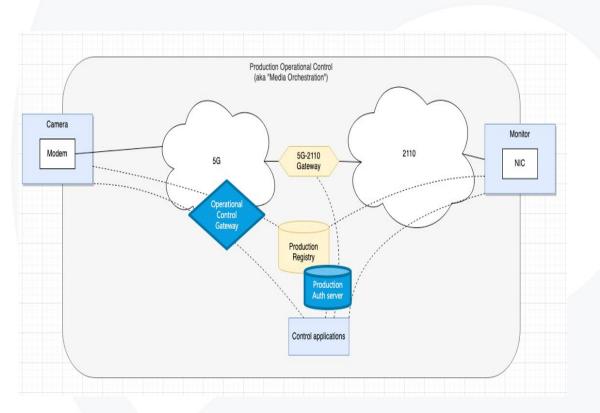
- Scenario 1: Wireless cameras within a production
 - Exploring the substitution of COFDM technologies with 5G
- Scenario 2: Remote production over 5G
 - Equipment on the event premises <-> production team in the gallery
 - Racking, PTZ controls, intercommunication between the crews
- Scenario 2: Remote contribution
 - Going beyond current bonding-based solutions
- Exploring cloud-based MCR

Traditional set-up to 5G enabled set-up

Codecs assessment (latency, quality and bandwidth trade-off)

- NR Midband (3.8GHz) 100MHz: around 120Mbps 200Mbps (uplink)
- 4-5 «wireless» cameras 5G enabled: around 30/40 Mbps each;1080p50
 - Codecs (standardized): H.264/HEVC
 - JPEG-XS, VC2: at least 100Mbps
 - Latency (enc +dec): from 30ms to 100ms depending from the configurations
 - normal latency: no restrictions on the GoP structure (I, P, B frames)
 →reorder on the decoder side
 - Intra ONLY: given the available bit-rate, we expect poor quality
 - IPPP...IPPP: latency and quality to be checked
 - Frame divided in multiple slices: latency should improve, quality to be checked

UC2 Multiple wireless camera - KPI


Remote production over 5G

Characteristic system parameter		Comment
Glass to Glass latency	20-150 ms	Latency from a image being captured by a camera to the point it becomes usable in a production gallery (discounting onward distribution
Video uplink Data Rate	>50 Mb/s	This is to allow high quality video . different compression algorithms may be deployed depending depending on the format of the video
Service area	1000m ²	Typical small studio area
Mobility	≤10km/h	Support for walking speed or robotic mount
Number of Streams	Up to 5	
Jitter and latency	Constant	

.... more relaxed for the contribution scenario

Media Orchestration & Gateway

GATEWAY

RTP <-> ST2110

RTP<->RIST

RIST <->ST2110

RIST <->RTP

Next steps

- Studying/testing timing solutions for media production using 5G
- Lab tests in March @Aachen (Ericsson Lab)
 - Without the operational control layer and the gateway
- Testing the operational control layer and gateway before the end of the year
- Planning for live trials one for each use-case
- Interaction with 3GPP (and other SDOs)
 - Study on Media Production over 5G NPN: to identify standardization needs and potential standards gaps when using 5G NPN Systems for media production

Thanks for your attention! Any questions?