

SG REC©RDS

5G Technology Enablers for Content Production – Part II

> Pablo Pérez Nokia Bell Labs

Better network performance for best QoE

Throughput – speed & capacity

5G is faster & provides far better network and service performance versus 4G

5G enables professional use cases

LTE brought the generalization of consumer video on handheld devices

TV and Mobile Devices: Average Time Spent in the US, 2014-2021

hrs:mins per day among population

5G brings new industrial and professional use cases ("verticals")

- Going from wired to wireless
- New workloads
- New (and demanding) QoE requirements
- Beyond consumer 5G deployments

Example: cloud-based wireless studio

5G enables cloud-based wireless production

Wireless

^{DDD} – mm-Wave and massive MIMO for high bandwidth

Cloud-based

$$\sim$$
 – Edge cloud for low latency

Production

End-to-end network slicing to scale and guarantee resources

5G spectrum and bandwidth

mmW – the principles

SG RECORDS BTS IEEE Broadcast Technology Society

mmWave name comes from its wavelength, λ

Technically less than 1cm and greater than 1mm (30-300GHz). In 3GPP 5G this is extended down to

The wavelength determines the size of antenna elements

Half wave dipole Antenna Element sizes

26GHz = 6mm 3.5GHz = 42.8mm 700MHz = 214mm

Solution: mmWave supports high gain beamforming antenna arrays to increase coverage/cell sizes.

mmWave is needed to meet ultra-high broadband 5G speeds 1GHz x 10bps/Hz 10Gbps

mmW today

- Deployment in dense urban areas and venues
- Few networks: USA, Australia, China, Korea...
- Optimized for downlink (DL)

2000

1800 (sdq M) 1200

> > 0

100

200

300

LOS Distance (meters)

• Main limitation: availability of user terminals

400

500

600

DL Peak rates 2.0 Gbps

500m range in line-of-sight

100-150m range in dense urban

MEC (Multi-Access Edge Computing)

- An open and standardized IT service environment within the operator's networks
- Hosts third-party applications
- Distributed cloud for highest flexibility
 - Edge cloud (MEC): lowest latency, highest bandwidth

5G REC©RDS

Societ

Edge cloud requires distributed 5G core

5G RECORDS

Use case: cloud production in local units

- 5G-enabled sports venue
 - mmW radio
 - Available MEC resources
- 5G-enabled local production unit
 - 5G wireless cameras
 - Cloud-based workflow running on MEC
- 5G-enabled audience
 - High-speed internet access via mmW
 - Added-value services running on MEC
- We need to prioritize production wrt users → network slicing

End-to-end Network Slicing

- Allocate resources / priority classes across the network for some traffic flows, effectively creating a "virtual network" (a network slice) with QoS guarantee
- Requires coordination ("orchestration") of resources → Software Defined Network

5G-RECORDS Group

5G-RECORDS Channel

Thanks for your attention! Any questions?

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 957102