

SG REC©RDS

5G Wireless Studio

Paola Sunna EBU

Use case Multiple camera wireless studio

Main partners:

- The best of an **IP studio** combined with the super-fast and highly reliable wireless 5G connections
- 5G will facilitate new types of workflows addressing 3 core requirements:
 - Flexibility and reduction cost in setting up productions
 - Scalability from small to large events
 - Shareability of content along the production chain and between creative stages

• 2 sub use-cases:

- 1. Multiple cameras (~5) in a wireless studio. Wired/wireless functionalities will be combined using a fully IP system
- 2. Outdoor production scenario with 2 or more 5G-enabled cameras and sound capture devices connected to NPN

UC2 Multiple wireless camera -Components

- **Non-public networks**
- **Timing and synchronization**
- **Network slicing**
- Media orchestration
- 5G <-> ST2110/RIST

Automation & Simplification

(mostly needed for creating

Professional content production today

Sport events, newsgathering, etc

SG RECORDS BTS IEEE Broadcast Technology Society

- DVB-T based transmitter:
 - Bandwidth: 30/40Mbps
 - Latency: > = 20ms
 - UHF link for the «camera» controls
- Bonded cellular systems:
 - Bandwidth: depends from the number of aggregated modems; 30-70 Mbps
 - Latency: >=700ms-1s
 - Some of them capable to deal with return video, tally and intercom (separate solutions)
 - Plug & Play/vendor lock-in

UC2 Multiple wireless camera

- Scenario 1: Wireless cameras within a production
 - Exploring the substitution of COFDM technologies with 5G
- Scenario 2: Remote production over 5G
 - Equipment on the event premises <-> production team in the gallery
 - Racking, PTZ controls, intercommunication between the crews
- Scenario 2: Remote contribution
 - Going beyond current bonding-based solutions
- Exploring cloud-based MCR

Traditional set-up to 5G enabled set-up

Codecs assessment (latency, quality and bandwidth trade-off)

- NR Midband (3.8GHz) 100MHz: around 120Mbps 200Mbps (uplink)
- 4-5 «wireless» cameras 5G enabled: around 30/40 Mbps each;1080p50
 - Codecs (standardized): H.264/HEVC
 - JPEG-XS, VC2: at least 100Mbps
 - Latency (enc +dec): from 30ms to 100ms depending from the configurations
 - normal latency: no restrictions on the GoP structure (I, P, B frames)
 →reorder on the decoder side
 - Intra ONLY: given the available bit-rate, we expect poor quality
 - IPPP...IPPP : latency and quality to be checked
 - Frame divided in multiple slices: latency should improve, quality to be checked

UC2 Multiple wireless camera - KPI

Remote production over 5G

Characteristic system parameter		Comment	
Glass to Glass latency	20-150 ms	Latency from a image being captured by a camera to the point it becomes usable in a production gallery (discounting onward distribution	
Video uplink Data Rate	>50 Mb/s	This is to allow high quality video . different compression algorithms may be deployed depending on the format of the video	
Service area	1000m ²	Typical small studio area	
Mobility	≤10km/h	Support for walking speed or robotic mount	
Number of Streams	Up to 5		
Jitter and latency	Constant		

.... more relaxed for the contribution scenario

Media Orchestration & Gateway

GATEWAY RTP <-> ST2110 RTP<->RIST RIST <->ST2110 RIST <->RTP

Use case live immersive media

- Real-time end-to-end free-viewpoint video (FVV) system that includes capturing, 5G contribution, virtual view synthesis on an edge server, 5G delivery and visualization on user terminals.
- The 5G connectivity allows a portable FVV system to operate in real time with reduced deployment cost and high flexibility.
- Video workflow in 3 stages:
 - Capturing.
 - Encoding and transmission.
 - Synthesis and visualization.

Requirements:

- Media acquisition: up to 200 Mbps per camera.
- Radio uplink speeds of 20-200 Mbps.
- Downlink speeds of 2-20 Mbps per user.
- Connected end-users: 10-100 per 1000 m².
- Reliability: 1 error every 10 min.

⁵G-Records Portable 5G deployment

FVV Content Production Scenarios

- FVV operates as a "virtual camera" which can be integrated in the production workflow
- Requirements depend strongly on scene complexity --> 2-step approach

Scenario		Simple	Advanced
Real scene	Lighting	Controlled (indoor)	
	Complexity	Low: few objects and occlusions, short depth range	High: many objects and occlusions, wide depth range
Virtual viewpoint characteristics	Selection	By camera operator, in real time	
	Range (angle)	Narrow	Wide
	# DOFs (example)	1 (within arc defined by reference cameras)	2 (also forward and backward)
Network requirements	Bitrate	~50 Mbps/cam	~100 Mbps/cam
	Latency	< 170 ms	< 170 ms

Next steps

- Studying/testing timing solutions for media production using 5G
- Lab tests in March @Aachen (Ericsson Lab)
 Without the operational control layer and the gateway
- Testing the operational control layer and gateway before the end of the year
- Planning for live trials one for each use-case
- Interaction with 3GPP (and other SDOs)
 - Study on Media Production over 5G NPN: to identify standardization needs and potential standards gaps when using 5G NPN Systems for media production

5G-RECORDS Channel

Thanks for your attention! Any questions?

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 957102